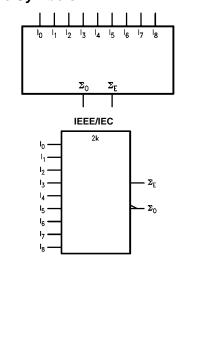
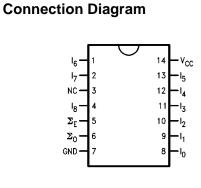
74F280 9-Bit Parity Generator/Checker

74F280 9-Bit Parity Generator/Checker

General Description

FAIRCHILD


SEMICONDUCTOR


The F280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number of these inputs is HIGH. If an even number of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output.

Ordering Code:

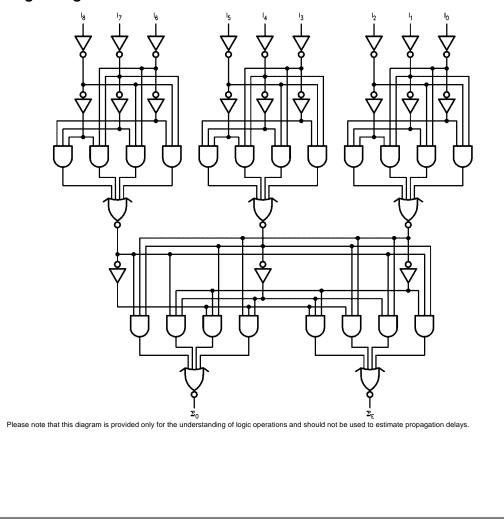
Order Number	Package Number	Package Description					
74F280SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow							
74F280SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide							
74F280PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide							
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

Logic Symbols

© 2000 Fairchild Semiconductor Corporation DS009512

74F280

Unit Loading/Fan Out


Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
I ₀ –I ₈	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
Σο	Odd Parity Output	50/33.3	–1 mA/20 mA	
Σ_{E}	Even Parity Output	50/33.3	-1 mA/20 mA	

Truth Table

Number of	Outputs					
HIGH Inputs I ₀ –I ₈	∑ Even	Σ Odd				
0, 2, 4, 6, 8	Н	L				
1, 3, 5, 7, 9	L	Н				

H = HIGH Voltage Level L = LOW Voltage Level

Logic Diagram

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

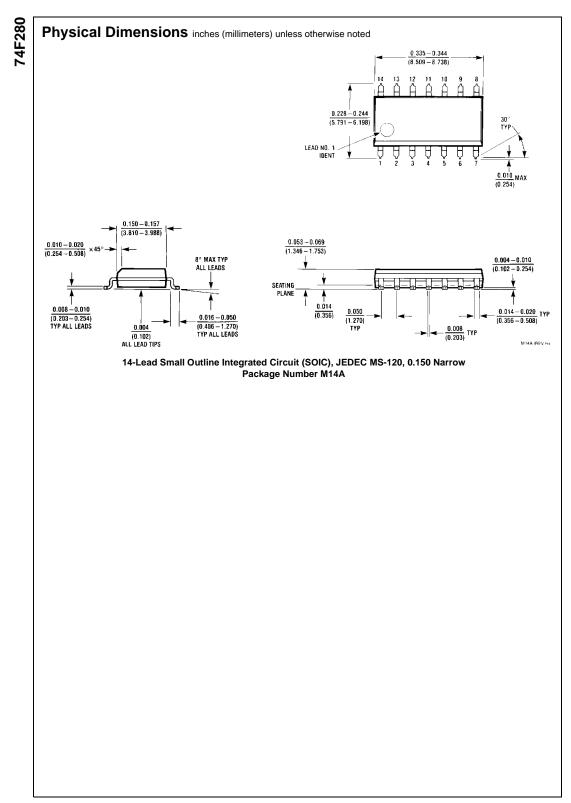
Recommended Operating Conditions

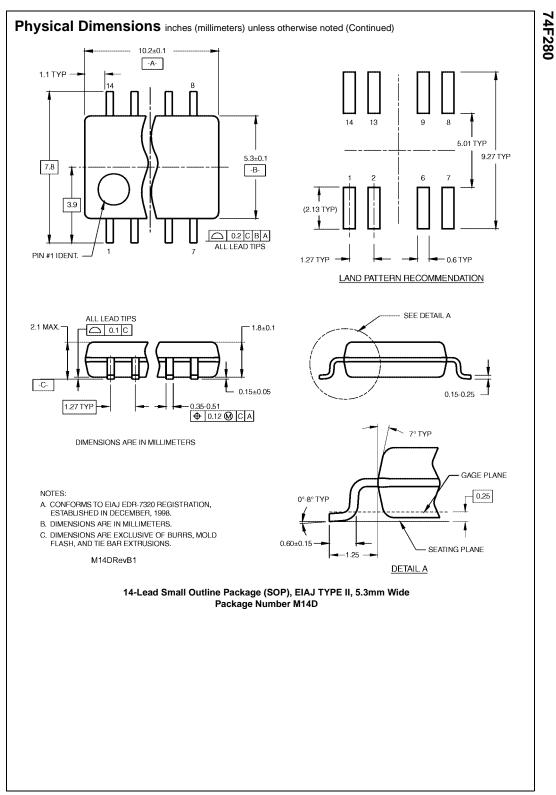
Free Air Ambient Temperature Supply Voltage

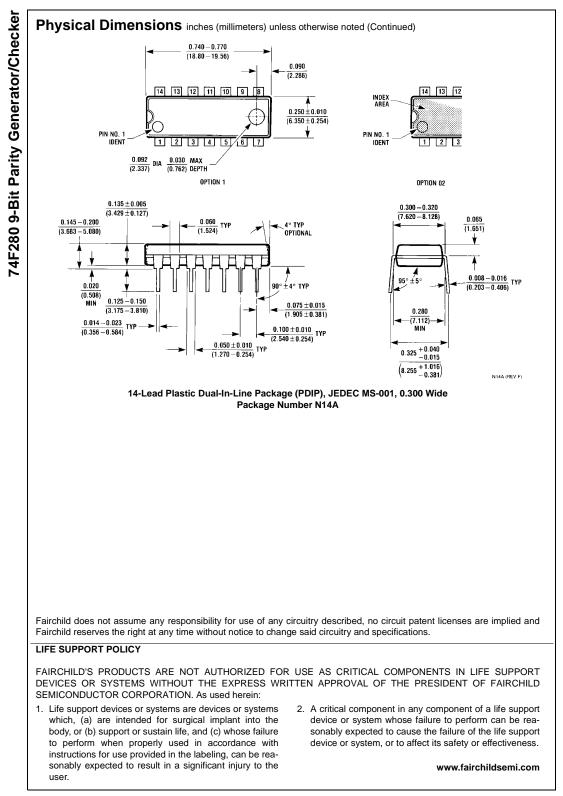
74F280

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	ol Parameter		Parameter Min Ty		Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V_{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
IIH	Input HIGH				5.0	μA	Max	1/2 = 2.71/2	
	Current				5.0	μΛ	IVIAA	V _{IN} = 2.7V	
I _{BVI}	nput HIGH Current				7.0	۸	Max	V 7.0V	
	Breakdown Test				7.0	μA	IVIAX	V _{IN} = 7.0V	
ICEX	Output HIGH				50	A	Max	V – V	
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	A	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current				3.75	μΑ 0.0		All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit Curren	t	-60		-150	mA	Max	$V_{OUT} = 0V$	
ICCH	Power Supply Current			25	38	mA	Max	V _O = HIGH	

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	İ
t _{PLH}	Propagation Delay	6.5	10.0	15.0	6.5	20.0	6.5	16.0	20
t _{PHL}	I_n to Σ_E	6.5	11.0	16.0	6.5	21.0	6.5	17.0	ns
t _{PLH}	Propagation Delay	6.0	10.0	15.0	5.0	20.0	6.0	16.0	ns
t _{PHL}	I_n to Σ_O	6.5	11.0	16.0	6.5	21.0	6.5	17.0	115

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.